博客
关于我
Python_matplotlib库绘制02(柱状图,饼状图)
阅读量:732 次
发布时间:2019-03-21

本文共 3464 字,大约阅读时间需要 11 分钟。

Matplotlib 绘图技巧:从柱状图到饼状图

Matplotlib 是一个强大的绘图库,支持多种类型的图表绘制,包括柱状图、饼状图、条形图等。在本文中,我们将逐步学习如何使用 Matplotlib 进行数据可视化。


柱状图

1. 简单柱状图

柱状图是最常用的数据可视化工具之一。下面是一个简单的柱状图示例:

import matplotlib.pyplot as pltnum_list = [1, 5, 6.5, 8, 11]plt.bar(range(len(num_list)), num_list)plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.show()

2. 改变柱状图颜色

为了更直观地展示数据,可以通过设置颜色来区分不同柱状图:

import matplotlib.pyplot as pltnum_list = [1, 5, 6.5, 8, 11]plt.bar(range(len(num_list)), num_list, color='rgbcy')plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.show()

3. 设置柱状图标签

为柱状图添加标签,使图表更加用户友好:

import matplotlib.pyplot as pltnum_list = [1, 5, 6.5, 8, 11]name_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']plt.bar(range(len(num_list)), num_list, color='rgbcy', tick_label=name_list)plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.show()

4. 堆叠柱状图

当需要同时比较多个数据系列时,可以使用堆叠柱状图:

import matplotlib.pyplot as pltnum_list = [1, 5, 6, 8, 11]num_list2 = [2, 3, 5, 1, 4]name_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']plt.bar(range(len(num_list)), num_list, color='b', tick_label=name_list, label='男')plt.bar(range(len(num_list)), num_list2, color='g', tick_label=name_list, label='女', bottom=num_list)plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.legend(loc='best')plt.show()

5. 横向条形图

如果想在水平方向展示数据,可以使用横向条形图:

import matplotlib.pyplot as pltnum_list = [1, 5, 6, 8, 11]num_list2 = [2, 3, 5, 1, 4]name_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']plt.barh(range(len(num_list)), num_list, color='b', tick_label=name_list, label='男')plt.barh(range(len(num_list)), num_list2, color='g', tick_label=name_list, label='女', left(num_list))plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.legend(loc='best')plt.show()

并列柱状图

1. 数据准备

为了制作并列柱状图,可以将每个柱子水平拉宽:

import matplotlib.pyplot as pltnum_list = [1, 5, 6.5, 8, 11]num_list2 = [2, 3, 5, 1, 4]name_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']x = list(range(len(num_list)))total_width = 0.8n = 2  #柱子数量width = total_width / n

2. 绘制并列柱状图

plt.bar(x, num_list, label='男', width=width)for i in range(len(x)):    x[i] = x[i] + widthplt.bar(x, num_list2, tick_label=name_list, label='女', width=width)plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.legend(loc='best')plt.show()

饼状图

1. 简单饼状图

饼状图适合展示不同部分所占的比例。以下是一个简单的饼状图示例:

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文sizes = [10, 30, 20, 40]labels = ['A', 'B', 'C', 'D']plt.pie(sizes, labels=labels)plt.title("饼状图")plt.legend(loc='best')plt.show()

2. 饼状图到中心距离

要使饼状图的某一部分距离中心,可以设置 explode 参数:

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']sizes = [10, 30, 20, 40]labels = ['A', 'B', 'C', 'D']explode = (0, 0.1, 0.2, 0.1)plt.pie(sizes, labels=labels, explode=explode)plt.title("饼状图")plt.legend(loc='best')plt.show()

3. 设置饼状图颜色

你可以通过 colors 参数为饼状图添加颜色:

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']sizes = [10, 30, 20, 40]labels = ['A', 'B', 'C', 'D']colors = ['r', 'g', 'y', 'b']plt.pie(sizes, labels=labels, colors=colors)plt.title("饼状图")plt.legend(loc='best')plt.show()

4. 显示百分比

如果需要显示百分比,可以使用 autopct 参数:

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']sizes = [10, 30, 20, 40]labels = ['A', 'B', 'C', 'D']colors = ['r', 'g', 'y', 'b']plt.pie(sizes, labels=labels, colors=colors, autopct='%1.2f%%')plt.title("饼状图")plt.legend(loc='best')plt.show()

以上就是从简单柱状图到饼状图的 Matplotlib 绘图技巧总结。如果你有任何问题或需要进一步的帮助,欢迎在评论区留言!

转载地址:http://mzagz.baihongyu.com/

你可能感兴趣的文章
Node-RED中Switch开关和Dropdown选择组件的使用
查看>>
Node-RED中使用html节点爬取HTML网页资料之爬取Node-RED的最新版本
查看>>
Node-RED中使用JSON数据建立web网站
查看>>
Node-RED中使用json节点解析JSON数据
查看>>
Node-RED中使用node-random节点来实现随机数在折线图中显示
查看>>
Node-RED中使用node-red-browser-utils节点实现选择Windows操作系统中的文件并实现图片预览
查看>>
Node-RED中使用node-red-contrib-image-output节点实现图片预览
查看>>
Node-RED中使用node-red-node-ui-iframe节点实现内嵌iframe访问其他网站的效果
查看>>
Node-RED中使用Notification元件显示警告讯息框(温度过高提示)
查看>>
Node-RED中使用range范围节点实现从一个范围对应至另一个范围
查看>>
Node-RED中实现HTML表单提交和获取提交的内容
查看>>
Node-RED中将CSV数据写入txt文件并从文件中读取解析数据
查看>>
Node-RED中建立TCP服务端和客户端
查看>>
Node-RED中建立Websocket客户端连接
查看>>
Node-RED中建立静态网页和动态网页内容
查看>>
Vue3+Element-ul学生管理系统(第二十二课)
查看>>
Node-RED中根据HTML文件建立Web网站
查看>>
Node-RED中解析高德地图天气api的json数据显示天气仪表盘
查看>>
Node-RED中连接Mysql数据库并实现增删改查的操作
查看>>
Node-RED中通过node-red-ui-webcam节点实现访问摄像头并截取照片预览
查看>>